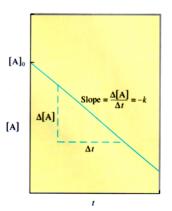

## The Integrated Rate Law

The integrated rate law describes how concentration varies with time. For each differential rate law there is a corresponding integrated rate law. To find the integrated rate law from experimental data we graph time v. concentration and look for linear relationships. Integrated rate laws are determined for one reactant at a time. It is significantly easier to do for single reactant reactions, but can be done with more complex reactions.




## Second Order IRL

| $2C_4H_{6(g)} \rightarrow C_8H_{12(g)}$                                                                     | t (s)                                                     | $\frac{1}{[C_4H_6]}$                                 | $ln[C_4H_6]$                                                                 | 4                                     | 00  |          |                |      |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|-----|----------|----------------|------|
| Rate = $-\frac{\Delta[C_4H_6]}{\Delta t} = k[C_4H_6]^2$<br>$\frac{1}{[C_4H_6]} = kt + \frac{1}{[C_4H_6]_o}$ | 0<br>1000<br>1800<br>2800<br>3600<br>4400<br>5200<br>6200 | 100<br>160<br>210<br>270<br>320<br>370<br>415<br>481 | -4.605<br>-5.075<br>-5.348<br>-5.599<br>-5.767<br>-5.915<br>-6.028<br>-6.175 | 1<br>[C <sub>4</sub> H <sub>6</sub> ] | 000 | 2000 Tin | 4000<br>ne (s) | 6000 |

## Zero Order IRL

$$2N_2O_{(g)} \rightarrow 2N_{2(g)} + O_{2(g)}$$
  
Rate =  $-\frac{\Delta[N_2O]}{\Delta t} = k[N_2O]^0 = k$   
 $[N_2O] = -kt + [N_2O]_o$   
 $[A] = -kt + [A]_o$ 



| Ex: |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |

## Rate Law Summary

| <u></u>                                                        | Order                                 |                             |                                        |  |  |
|----------------------------------------------------------------|---------------------------------------|-----------------------------|----------------------------------------|--|--|
| <u> </u>                                                       | Zero                                  | First                       | Second                                 |  |  |
| Rate law                                                       | Rate = $k$                            | Rate = $k[A]$               | Rate = $k[A]^2$                        |  |  |
| Integrated rate law                                            | $[\mathbf{A}] = -kt + [\mathbf{A}]_0$ | $\ln[A] = -kt + \ln[A]_0$   | $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$ |  |  |
| Plot needed to give a straight line                            | [A] versus t                          | ln[A] versus $t$            | $\frac{1}{[A]}$ versus $t$             |  |  |
| Relationship of rate constant<br>to the slope of straight line | Slope = $-k$                          | Slope = $-k$                | Slope = $k$                            |  |  |
| Half-life                                                      | $t_{1/2} = \frac{[A]_0}{2k}$          | $t_{1/2} = \frac{0.693}{k}$ | $t_{1/2} = \frac{1}{k[A]_0}$           |  |  |