Name: Period: Key

1) An 5.65 mol sample of acetone, CH₃COCH₃, is placed in a 15.0 L evacuated rigid tank and heated to 372°C. At that temperature, all of the methanol is vaporized and some of the acetone decomposes to form ethyl ketone gas and methane gas, as represented in the equation below.

$$CH_3COCH_{3(g)} \longrightarrow CH_2CO_{(g)} + CH_{4(g)}$$

- (a) The reaction mixture contains 2.30 mol of $CH_{4(g)}$ at equilibrium at 327°C.
- (i) Calculate the number of moles of CH₂CO_(g) in the tank.

(ii) Calculate the number of grams of CH₃COCH_{3(g)} remaining in the tank.

(iii) Calculate the total moles of .gas in the tank.

(iv) Calculate the mole fraction of $CH_{4(g)}$ in the tank.

- 2) Methane, $CH_{4(g)}$, will combust to form carbon dioxide and water.
- A) Write a balanced chemical equation for the reactions.