AP[®] CHEMISTRY 2011 SCORING GUIDELINES

Question 3

Hydrogen gas burns in air according to the equation below.

$$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(l)$$

(a) Calculate the standard enthalpy change, ΔH_{298}° , for the reaction represented by the equation above.

(The molar enthalpy of formation, ΔH_f° , for H₂O(*l*) is -285.8 kJ mol⁻¹ at 298 K.)

$\Delta H_{298}^{\circ} = [2 (-285.8)] - [2(0) + 1(0)] = -571.6 \text{ kJ mol}^{-1}$	1 point is earned for the correct answer.
--	---

(b) Calculate the amount of heat, in kJ, that is released when 10.0 g of $H_2(g)$ is burned in air.

$q = 10 \text{ g H}_2 \times \frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2} \times \frac{285.8 \text{ kJ}}{1 \text{ mol H}_2} = 1.42 \times 10^3 \text{ kJ}$	1 point is earned for the correct setup.
	1 point is earned for the correct answer.

(c) Given that the molar enthalpy of vaporization, ΔH_{vap}° , for H₂O(*l*) is 44.0 kJ mol⁻¹ at 298 K, what is the standard enthalpy change, ΔH_{298}° , for the reaction 2 H₂(*g*) + O₂(*g*) \rightarrow 2 H₂O(*g*) ?

$2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(l)$ $2 \operatorname{H}_{2}\operatorname{O}(l) \rightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)$	-571.6 kJ +2(44.0) kJ	1 point is earned for the correct answer.
$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(g)$	-483.6 kJ	

A fuel cell is an electrochemical cell that converts the chemical energy stored in a fuel into electrical energy. A cell that uses H_2 as the fuel can be constructed based on the following half-reactions.

Half-reaction	<i>E</i> ° (298 K)
$2 \operatorname{H}_2\operatorname{O}(l) + \operatorname{O}_2(g) + 4 e^- \rightarrow 4 \operatorname{OH}^-(aq)$	0.40 V
$2 \operatorname{H}_2\operatorname{O}(l) + 2 e^- \rightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$	-0.83 V

AP[®] CHEMISTRY 2011 SCORING GUIDELINES

Question 3 (continued)

(d) Write the equation for the overall cell reaction.

$2 \text{ H}_2\text{O}(l) + \text{O}_2(g) + 4 e^- \rightarrow 4 \text{ OH}^-(aq)$ $2 \text{ H}_2(g) + 4 \text{ OH}^-(aq) \rightarrow 4 \text{ H}_2\text{O}(l) + 4 e^-$	1 point is earned for the correct equation.
$2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{H}_2\operatorname{O}(l)$	

(e) Calculate the standard potential for the cell at 298 K.

$E^{\circ} = 0.40 \text{ V} - (-0.83 \text{ V}) = 1.23 \text{ V}$	1 point is earned for the correct answer.
---	---

(f) Assume that 0.93 mol of $H_2(g)$ is consumed as the cell operates for 600. seconds.

(i) Calculate the number of moles of electrons that pass through the cell.

$0.93 \text{ mol } \text{H}_2 \times \frac{2 \text{ mol } e^-}{1 \text{ mol } \text{H}_2} = 1.9 \text{ mol } e^-$ 1 point is earned for the correct answer.

(ii) Calculate the average current, in amperes, that passes through the cell.

1.9 mol $e^- \times \frac{96,500 \text{ C}}{1 \text{ mol } e^-} = 1.8 \times 10^5 \text{ C}$	1 point is earned for calculation of the charge in coulombs.
$I = \frac{q}{t} = \frac{1.8 \times 10^5 \text{ C}}{600. \text{ s}} = 3.0 \times 10^2 \text{ amps}$	1 point is earned for calculation of the current in amperes.

(g) Some fuel cells use butane gas, C_4H_{10} , rather than hydrogen gas. The overall reaction that occurs in a butane fuel cell is $2 C_4H_{10}(g) + 13 O_2(g) \rightarrow 8 CO_2(g) + 10 H_2O(l)$. What is one environmental advantage of using fuel cells that are based on hydrogen rather than on hydrocarbons such as butane?

Hydrogen fuel cells produce only water as a product, unlike fuel cells that use hydrocarbons, which release carbon dioxide. Carbon dioxide contributes to global warming via the enhanced atmospheric greenhouse effect.	1 point is earned for an acceptable environmental advantage.
--	--