AP[®] CHEMISTRY 2011 SCORING GUIDELINES (Form B)

Question 3 (9 points)

Answer the following questions about glucose, $C_6H_{12}O_6$, an important biochemical energy source.

(a) Write the empirical formula of glucose.

CH ₂ O	1 point is earned for the correct formula.
-------------------	--

In many organisms, glucose is oxidized to carbon dioxide and water, as represented by the following equation.

$$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l)$$

A 2.50 g sample of glucose and an excess of $O_2(g)$ were placed in a calorimeter. After the reaction was initiated and proceeded to completion, the total heat released by the reaction was calculated to be 39.0 kJ.

(b) Calculate the value of ΔH° , in kJ mol⁻¹, for the combustion of glucose.

$2.50 \text{ g} \times \frac{1 \text{ mol } C_6 H_{12} O_6}{180.16 \text{ g} C_6 H_{12} O_6} = 0.0139 \text{ mol } C_6 H_{12} O_6$	1 point is earned for the correct answer.	
$\frac{-39.0 \text{ kJ}}{0.0139 \text{ mol}} = -2,810 \text{ kJ mol}^{-1}$		

(c) When oxygen is not available, glucose can be oxidized by fermentation. In that process, ethanol and carbon dioxide are produced, as represented by the following equation.

$$C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)$$
 $\Delta H^\circ = -68.0 \text{ kJ mol}^{-1} \text{ at } 298 \text{ K}$

The value of the equilibrium constant, K_p , for the reaction at 298 K is 8.9×10^{39} .

(i) Calculate the value of the standard free-energy change, ΔG° , for the reaction at 298 K. Include units with your answer.

$\Delta G^{\circ} = -RT \ln K$	1 point is earned for correct setup	
= $-(8.31 \text{ J mol}^{-1} \text{ K}^{-1})(298 \text{ K})(\ln 8.9 \times 10^{39})$	1 point is earned for correct answer.	
$= -228,000 \text{ J mol}^{-1} = -228 \text{ kJ mol}^{-1}$	1	

AP[®] CHEMISTRY 2011 SCORING GUIDELINES (Form B)

Question 3 (continued)

(ii) Calculate the value of the standard entropy change, ΔS° , in J K⁻¹ mol⁻¹, for the reaction at 298 K.

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	
$\Delta S^{\circ} = \frac{\Delta H^{\circ} - \Delta G^{\circ}}{T}$	1 point is earned for the correct setup.
$= \frac{(-68.0 \text{ kJ mol}^{-1}) - (-228 \text{ kJ mol}^{-1})}{298 \text{ K}}$	1 point is earned for the correct answer.
= 0.537 kJ K ⁻¹ mol ⁻¹ = 537 J K ⁻¹ mol ⁻¹	

(iii) Indicate whether the equilibrium constant for the fermentation reaction increases, decreases, or remains the same if the temperature is increased. Justify your answer.

ΔH° is negative, so when the temperature increases, the equilibrium for the reaction is shifted to the left (according to Le Châtelier's principle). This means that the equilibrium constant decreases.	1 point is earned for the correct answer with justification.
---	--

(d) Using your answer for part (b) and the information provided in part (c), calculate the value of ΔH° for the following reaction.

$$C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$$

$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l)$ 2 $C_2H_5OH(l) + 2 CO_2(g) \rightarrow C_6H_{12}O_6(s)$	$\Delta H^{\circ} = -2,810 \text{ kJ mol}^{-1}$ $\Delta H^{\circ} = 68.0 \text{ kJ mol}^{-1}$	1 point is earned for the correct setup.
$2 \text{ C}_2\text{H}_5\text{OH}(l) + 6 \text{ O}_2(g) \rightarrow 4 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(l)$	$\Delta H^{\circ} = -2,740 \text{ kJ mol}^{-1},$	l point is earned for the
thus ΔH° for the reaction as written in (d) is -1,3'	70 kJ mol ⁻¹ .	correct answer.